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On a Possible Microscopic Mechanism Underlying the Vapor

Pressure Paradox

R. Podgornik and V. A. Parsegian
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ABSTRACT We investigate the free energy and the profile of the displacement field in a stack of sterically interacting smectic
multilayers bounded by surfaces under tension. We show that this tension can lead to a significant change in the multilayer
free energy. It creates an additional long-range attraction (a pseudo-Casimir attraction) of the van der Waals type and leads
to a perturbation in the spatial profile of the displacement field fluctuations. This perturbation can extend to macroscopic
distances into the multilayer, away from the perturbing surfaces. The lowering of the free energy of the layers varies explicitly
as an inverse power of the thickness of the stack, but also depends implicitly on the bare interactions between the smectic
layers. One may regard this lowered energy as being due to a kind of mechanical van der Waals force. We investigate in detail
the characteristics and magnitude of the free energy as well as the fluctuations in the displacement field for some typical

situations of underlying interlamellar interactions.

INTRODUCTION

Among the greater embarrassments avoided by theorists and
discussed sotfo voce by experimentalists is the vapor pres-
sure paradox. Why do phospholipid multilayers take up less
water from a 100% relative humidity vapor than they do
from liquid water (Rand and Parsegian, 1989)? Why do
these same multilayers imbibe less water when they are
adsorbed to a solid substrate than when they are suspended
in liquid water (Jendrasiak and Hasty, 1974; Jendrasiak and
Mendible, 1976; Torbet and Wilkins, 1976)? Nor is this
curious phenomenon seen only with membranes. Solid
boundaries are also known to induce nematic order on
rodlike polysaccharides (W. Orts, personal communication)
and on colloidal spheres (J. Cohen, personal communica-
tion). We propose that the tension of a vapor/multilayer
surface or adsorption to a solid surface creates effective
attractive stabilizing forces within multilamellar arrays. One
effect of a bounding surface is to suppress mechanical
undulations of layers, either because of surface tension or
because of forces that cause the first bilayer to adhere to a
solid surface. We inquire into the remarkable persistence of
this suppression into neighboring layers.

This is not a trivial surface phenomenon. The effect of
exposed surfaces is of sufficiently long range that the in-
hibited swelling is seen in well-defined x-ray diffraction
that requires many uniformly spaced layers. In this respect
an anomalously long-range coupling of the surface to the
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bulk is required, a coupling that can hardly be seen as an
ordinary surface phenomenon.

It has already been shown that surface suppression of
fluctuations in a smectic array can, in principle, create -
long-range attractive forces across the array (Mikheev,
1989; Ajdari et al., 1992). Here we have undertaken a
quantitative investigation of these attractive forces to see
their possible role in experimental systems where boundary-
surface perturbations have been seen or inferred to account
for odd behavior or equilibrium spacings.

We have written the multilayer energy as a competition
between direct, spatially varying interlayer interactions
(Leikin et al., 1993) (to maintain bilayer separation) versus
a work of bending (to maintain bilayer flatness). Because
both competing contributions to the net energy involve the
same parameter, the membrane bending modulus, their
equilibrium in suspension is highly vulnerable to added
perturbation. Enforced stiffening in one layer can be suc-
cessively communicated over long (= nm to mm) distances.
In this way a vapor or solid surface can suppress undula-
tions and limit water absorption almost on a macroscopic
scale.

ANALYSIS
Model effective Hamiltonian

We assume that our system is composed of N smectic layers
stacked to a thickness D, so that on average there is a
separation d = D/N between two successive layers, assum-
ing negligible thickness of the layers. Apart from the elastic
energy of smectic deformation, we assume that there exists
an additional surface contribution to the total energy of the
system in the form of a surface energy of the first and last
layers (see Fig. 1).
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FIGURE 1 Schematic representation of the different energy contribu-
tions in the model Hamiltonian Eq. 1. K and vy are connected with the bulk
and surface energy of the layers, and & is the transverse compressibility.

The Hamiltonian of the system is composed of a bulk g
and a surface ¥ part. Following common notation, fluctu-
ations from the mean position of a layer are measured in
terms of a displacement field u(z, p) where z is taken normal
to the average plane of the membranes and p is a vector in
the (x, y) plane. The energy density of the bulk part consists
of two terms: the first uses a compressibility modulus B for
changes in energy with changes in the density of packing;
the second is the work of bending the layers against the
restraint of a bending modulus K and varies as the square
of the local curvature of the layers, i.e., as a second deriv-
ative of u(z, p) taken in the p = (x, y ) plane:

Hp(u(z, p))

1 du(z, 21
= J dzpdz[§ %( u(azz p)) +§Kc(Viu(z, p))z],

)
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while

1 D 2
+§'y Vluz=+§,p s

V, is the gradient operator in the p = (x, y) plane. We have
assumed above that the first and the last layer are situated at
z = +D/2 and z = —D/2 with stack thickness D. The
consequence of the tension v is to stretch the two layers on
the surface and quench their displacement u(z = *=D/2; p).

We now proceed with the formal development to obtain
a closed expression for the free energy of the system char-
acterized by the mesoscopic Hamiltonian (Eqs. 1 and 2).
Ajdari et al. (1992) used somewhat different approaches,
based either on the closed form expression of a harmonic
propagator or on the Langevin dynamics of displacement
fields, to derive the free energy. All approaches are, of
course, equivalent and lead to the same results.

Our thinking was influenced to a large extent by the
formal similarity between the macroscopic theory of van der
Waals forces and the problem enunciated above. Our deri-
vation of the thermodynamic properties will thus basically .
follow a pattern that is usual for van der Waals forces
(Mahanty and Ninham, 1976).

The free energy

The free energy & as a function of D can be obtained in the
standard fashion from the partition function Z(D), where
the integration over phase space is limited to integrating out
fluctuations in the displacement field u(z, p). The details are
relegated to the Appendix; here we merely quote the final
result:

F(D) = —kT In E(D)

3

—KT Ine PHs(u(e. ) pHtstua=2D2p))y

where we have symbolically indicated the average over the
displacement field u(z, p) with an index. The partition
function is evaluated in the Appendix by two different
routes, a Green function method and an eigenfunction-
expansion method. Both lead to the following simple form
of the free energy, where the summations are done with
respect to the two-dimensional wave vector Q, describing
different fluctuation modes of the displacement field:

(o173 — O 'Y
F(D) = Fu(D) + kT % ln(l + m)
4

kT
+ 5 > In(1 — A%~ VEKMQD)
Q
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The three terms stand for the bulk or volume free energy
%, the surface and the finite-size contributions to the free
energy. In the case of an electrolyte the different parts of the
free energy would correspond to Debye-Hiickel, Onsager-
Samaras, and van der Waals-Lifshitz contributions to the
free energy (Podgornik, 1989). The bulk part corresponds to
the free energy of a slab D thick but without taking into
account any boundary effects.

After performing the Q summations (integrations) one
can rewrite Eq. 4 in the final form, again in the order bulk,
surface, finite-size contributions,

F(D) Fy kT 5 0 kT {(A)
s‘?*ﬂQmaxln(l " k®) 8w \k. D
(5
where we have defined
LA = J du In(1 — A%™), (6)
0

and

Y KB
A= v+ KB K& (7

Here and in what follows S = L? is the projected area of the
sample. Obviously, {(A) < 0, so that the 1/D finite-size term
is attractive. We also have 0 < {(A) < 7*/2. The depen-
dence of the free energy on % and D is basically the same
as derived by Ajdari et al. (1992) and clearly shows that the
suppressed boundary fluctuations lead to two additional
attractive contributions to the free energy. Any stiffening of
the layers by increasing K, lessens this additional attraction,
because intrinsically stiff layers feel little extra perturbation
from surface stiffening. The cutoff Q.. corresponds to the
shortest wavelength of fluctuations in the (x, y) directions
and must be on the order of the inverse molecular size.
As can be quickly ascertained, the largest contribution to
the above free energy comes from the surface term, which
depends implicitly, through B = RB(d), on the layer density.
There is no corresponding term in the electrodynamic van
der Waals force, because at the same level of approxima-
tions as assumed here, the dielectric susceptibility, analo-
gous to B, does not depend on the interlayer separation.

The spatial profile of fluctuations

In addition to seeing the dependence of the free energy on
the tension restraint of the bounding surfaces at z = *D/2,
we are interested in the transverse profile of the layer
displacement field. This profile is especially important if
one wants to assess the range and the relaxation of the
surface perturbation propagating into the bulk region.
Formally, the long-range nature of surface perturbation is
connected with the fact that the effective energy Eq. 1
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describing the fluctuating displacement field u(z, p) is crit-
ical, i.e., it does not contain any “mass” terms, and thus
leads to long-range correlations. In the case of a small
number of discrete smectic layers, an analogous problem
has been solved by Holyst et al. (1990).

The spatial profile of the fluctuations in the displacement
field for |z] = D/2 can be obtained straightforwardly (see
Appendix) as

(D)= 8" j d*p(u*(z, p))

1 1 2Ae 2 VESBQD (8)

(A + ¢ VEIBQD oeh \}g Qz(ZZ))}.

The fluctuations of the displacement field in the trans-
verse direction depend only on the ratio z/D and are thus of
long range. There is no finite intrinsic length, analogous to
the Debye decay length, that would describe the extent of
fluctuations. This dependence on z is a direct consequence
of the smectic effective Hamiltonian that produces long-
range (critical) fluctuations.

In the bulk case one has the well-known result (de
Gennes and Prost, 1993) for the displacement field fluctu-
ations in the transverse direction to the smectic planes:

_ K [ede T
T SmKd) u 4mka " Omb O

where we introduced the integration variable u = VK /%
0°D with u,,, = VKJB Q2D and u,;,, = VKB
Q@/L)*D. Q,,.. is the maximum wave vector associated
with the breakdown of the macroscopic form of the elastic
energy, and L is the linear dimension of the sample (we
necessarily work in the limit L >> D).

A simple rationalization of the long range of the surface
perturbation can be obtained as follows: a single-layer elas-
tic deformation that requires very little energy due to small
K. can only be relaxed through layer compression that,
because of the large 3B, requires a lot of energy and can thus
only relax over a substantial number of layers.

The general profile of displacement field fluctuations
across the sample of thickness D is given by the following
dependence on z, with |z] = D/2:

D
o*(z, D) — ol(z = "_‘E, D) =2Af(z, Ao, (10)

where

1 — A% u

umax dy e "(cosh 2u(z/D) — cosh u | "= du
f(Z7 A) = -

Umin

an

Umin
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Similarly, one gets for the mean square fluctuation at the
constraining surfaces of the sample,

D
O‘Z(Z =*3, D) =(1-A)1-gA)al, 12)

with

Umin Umin

A) = v dy A(1 + A)e™ [ [ du
e

The mean square displacement field fluctuation in the mid-
dle of the sample z = 0 is similarly obtained as

0*(z=0,D) = e(A)o3, (14)

A) = U dy 1 — Ae™" [ [ Um du
W=l Uiraes | w19

Umin

with

Umin

The three quantities (Eqs. 12—14) completely specify the
changes in the diplacement field fluctuations compared to
the bulk case. Obviously they are all proportional but are
smaller then the unconstrained fluctuations 3. The dimen-
sionless profile (6%(z, D) — 0*(z = *D/2, D))/} derived
from Eq. 10 is computed for four different values of A in
Fig. 2, making it clear that the perturbation of fluctuation
always extends across the entire stack of thickness D.

Because o2(z, D) is a function of z, the position of the
layer to which it refers, the local separation between the
layers, d(z), is also a function of their position. One can set,
following Helfrich (1978), d*(z) = wo*(z, D). This assump-

0.5 T T
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0.3 \ .

az(z)—a2(z=t%)
%

0.2 |- B
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-1 -0.5 0.5 1

0
2z/D

FIGURE 2 Normalized mean square fluctuations 0(z) as a function of
relative position z/D for four different values of A. Fluctuations are plotted
as a difference between o0(z) at each position and 0?(z = =D/2) at the
surfaces taken relative to the mean square fluctuation o of layers in an
infinite stack with the presumed compressibility % and bending modulus
K.. The values for A used here were: A = 1.0, 0.5, 0.25, 0.125 from top to
bottom. The u integral in Eq. 11 was taken from u,;, = 0.0001 to u,,,, =
200 and is only weakly sensitive to the choice of these bounds. The
long-range nature of the fluctuations is clearly discernible.
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tion, and the fact that the sum of d(z) across the sample
should add up to D for all N layers, completely specifies the
profile of local separation between the layers. This notation
assumes negligible layer thickness; d(z) here may be con-
sidered to be interlayer separation only.

It is clear from the above derivations that our approach to
the problem is effectively limited to the case of small
perturbations in the fluctuations of the smectic layers as
compared to the bulk. In this case the constraining effect of
the boundaries can be treated perturbatively with respect to
the bulk. If this were not the case, the compressibility %B
would have to be evaluated self-consistently in conjunction
with the assumption that it can, in general, vary along the
transverse coordinate of the multilamellar stack.

LIMITING RESULTS

Although we have derived the general dependence of the
fluctuations on the macroscopic parameters B and K, we
need a connection to the microscopic interlayer potential to
get the total dependence of the free energy on the effective
interlayer separation. This can be obtained rather straight-
forwardly in several limiting cases.

Mechanical van der Waals force for a stable
smectic array

We first consider large interlayer distances where, in the
absence of surface perturbations or applied osmotic stress,
the system has settled into an equilibrium thickness D,. A
small disturbance of the lamellar lattice to a thickness D
costs a bulk compression energy that is quadratic in the
difference (D — D). That is, to within an additive quantity,
the bulk free energy goes as

1 _ (D— Dy
BS D

Fop =

(16)

[\ ]

where the inverse longitudinal compressibility is measured
by osmotic stress, using polymers as a stressing agent (Par-
segian et al., 1986), and varies from 10° to 10> N/m? (Rand
and Parsegian, 1989; Safinya, 1989).

We now ask what happens to the lattice thickness when
one adds a mechanical van der Waals energy. For small
perturbations one can treat % as a constant, and we can
write for the total free energy of the layered system (cf. Egs.
15 and 16)

1 (D - Dy
5 Lgs PP

kT S (D)
=5 D, iy it

24r\k. 0 17D

where the D-independent surface terms have been omitted,
as they do not affect the equilibrium value of D. The new
equilibrium thickness D can be obtained from the minimi-
zation condition as

a@_O.D~D KT 1 )4 |
o~ P=ED sk b, Y
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where we have emphasized the fact that {(A) is negative.
Converting now to an average interlayer spacing d = D/N
and d, = Dy/N, we obtain

kT |5A)] ) (19

d= dO(l T 8TABNA]
for the first leading term in the surface tension effect on
undulation. We have introduced an anisotropy length scale
A = VR/K,. Inserting numerical values for &, K, and kT
into Eq. 19, we obtain the following estimate:

10*-10%)|4(A
i do(l_( o) >|)‘

The range in the numerical factor is due to the range in the
value of B, and {(A) goes from O to 7/2. Clearly, a finite
value of N can allow surface tension to rescale the value of
the average surface spacing substantially.

Mechanical van der Waals force in the case of
pure steric fluctuation forces

Another tractable limit can be developed by assuming a
certain model form for the compressibility modulus B =
9%B(d), and then evaluating the change in equilibrium spacing
in the array due to the presence of the mechanical van der
Waals force. In what follows we adopt a philosophy similar
to the one invoked in the calculation of the actual van der
Waals force and argue that the appropriate value of & is
simply its value for a corresponding infinite bulk system at
spacing d, just as the dielectric susceptibility of a layer in
the calculation of the van der Waals force is taken to be the
bulk dielectric function. Furthermore, if we assume that the
interlayer interactions are governed by Helfrich steric re-

pulsion forces, this assumption leads to the following form
of B:

%(D)=6—4 % \p) (20)

97 (kT)z(N)4

an expression taken directly from the Helfrich calculation
(Helfrich, 1978). Assuming this form of the bulk compress-
ibility, we are led to the following expression for the total
free energy, including the mechanical van der Waals term:

kv [(D) (N kTS Y
0 =5\ . 3lp) * 4n %! )
kT S

s D) o)

8’7T K D = E);;bulk + gsurface + %'vdw’,

@1

where V is the total volume of the sample, i.e., V = SD.
Clearly, in this case we had to retain the surface energy term
(second term, Eq. 21), because & is an explicit function
of D.

Evaluating the corresponding free energy per single layer
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per surface area in the stack, we get

Fd) 3w kDY |40
SN T 128k dz( - Tw) (22)
kT Q2. yd?
+ Am N ln(l + Gal8) kT),

where we have introduced the curvature modulus of a single
layer K, = (N/D)k,, because K, is for an energy per unit
volume.

Equation 22 displays several instructive features of un-
dulation interaction inhibited by a surface tension -y. As the
number of layers N — o, Eq. 22 smoothly and predictably
approaches the original Helfrich result. For finite N, the first
term in Eq. 22 retains the 1/d* Helfrich form, but with a
rescaled, stiffer curvature modulus:

k.
ke = (= Te@a=N

The second term in Eq. 22, with the form of an “Onsager-
Samaras” surface energy, varies as d* for y small enough
that yd */kT << 1. Even for moderate values of d and v, this
second term varies as In d.

As a result, the form of the free energy (Eq. 22) drasti-
cally changes the characteristics of the purely sterically
interacting smectic array. First of all, even in the absence of
external stress compressing the array, minimization of Eq.
22 gives an equilibrium spacing of the form

127 (kD) N( _Ié(A)I)
T8 k QL ™N)

2

(23)

For sufficiently large external osmotic pressure—or what
amounts to the same thing, sufficiently small interlamellar
separation—the change in equilibrium spacing when the
mechanical van der Waals force is turned on can be ob-
tained from the linear response relation, which in this case
assumes the form

Sdo_d_do
dy  dy

= RB(d,)~'811(dy), (24)

where 8I1(d,) is the part of the osmotic pressure due to the
mechanical van der Waals attraction (in this case obtainable
from Eq. 22), thus:

dsdo(l

where d, is the equilibrium spacing at a certain value of the
osmotic pressure when only steric interactions are present,
and d is its value when the steric interaction is modified by
the mechanical van der Waals interaction.

Clearly, in the case of small or vanishing osmotic pres-
sure (Eq. 23), the change in behavior is qualitative, because
there is no stable minimum without the mechanical van der
Waals force, whereas in the case of large osmotic pressures
it is quantitative, changing d, to d (given by Eq. 25).

277 (TN (25)
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Interestingly, the changes in the equilibrium spacing
(Egs. 23 and 25) both attest to the extreme importance of the
surface energy term, which is proportional to Q2. This is
a term missing from the electrodynamic van der Waals force
because (a) dielectric susceptibility, corresponding loosely
to 98, is not a function of d and (b) the van der Waals force
contains no upper cutoff in the Q integral. (The divergence
that arises here must be treated in a completely different
way; see the discussion in Ajdari et al., 1992.)

Conjectures for a general type of
interlamellar interaction

The general problem of calculating the free energy of sur-
face-suppressed fluctuations in the presence of general in-
terlamellar potentials is, of course, extremely difficult. In-
stead of proceeding ab initio, we approach the problem
phenomenologically. Consider two separate experiments:
first measure the free energy versus layer separation of a
multilamellar array filling the space, so that no surface
suppression of fluctuations is operating; second, do the
same on a finite array, where the surface free energy of the
type of Eq. 2 tends to suppress the fluctuations.

The general formulas for the interaction free energy now
establish the connection between both measured free ener-
gies. If the free energy (per unit area per single layer) of an
array unconfined by high energy surfaces is F/S, and its
osmotic pressure is equal to 1I, then the corresponding
inverse compressibility is

oll(d oll(d

T,N T,N

(26)

where V is the volume of the array that is supposed to
contain N layers and is D thick, and again the mean inter-
layer separation is d = D/N. Obtaining RB(d) from the first
experiment, one can immediately write down the free en-
ergy per surface area per lamella in the presence of surface
constraints:

F _ FO kT Qrznax ’Yd
SNTSNTan N 1“(1 ! kc(d%(d)))
(27
T 2)
~ 5o AR D 2

For succinctness, we give osmotic pressure 11 the form of an
exponential repulsion and a power law attraction (or repul-
sion):

— —kd
II(d) = Pye ™ = ond’™

(28)

After a minus sign H is the Hamaker constant of the van der
Waals attraction; after a plus sign the last term represents a
more complicated potential with positive H simulating the
effects of the undulation renormalized interactions (Evans
and Parsegian, 1986; Podgornik and Parsegian, 1992). This

Vapor Pressure Paradox 947

form provides a convenient vehicle for taking the derivative
(Eq. 26), for B(d) to be introduced into Eq. 27 for the
surface-tension-modulated free energy F/NS.

In the case of the underlying interaction potential (Eq.
28), one can obtain an explicit d dependence of F presented
for several sets of numerical parameters on Fig. 3. The
systematics of this behavior are difficult to discern, but the
application of the linear response relation, in the case that
underlying interactions (Eq. 28) show a secondary mini-
mum, permits us to evaluate the displacement of the sec-
ondary minimum. To the lowest order in N~ ' for the un-
derlying interaction pressure of the form Eq. 28, we obtain
the following relation:

kT Qs Y
4 B(dy) y + BEK,

The N~ dependence also seems to be supported by numer-
ical calculations (see Fig. 4). The above relation, derived
from the linear response ansatz, can also be generalized to
arbitrary forms of the interaction pressure.

If one evaluates the average value of the surface part of
the model Hamiltonian (Eq. 1), one obtains

L o I A

% = B(d,) "' 8I1(d,) = (29)
dO 0 0/ —

(30)
kT y R 1+ A) c At
C4my+ \[BK, Omas{ 1+ 2 (K /B)Q3,..D ;0 (n+1)
kT Y

oy
- 4177 + \M max *

where the last term in the brackets on the second line is

much smaller than 1 and can be safely omitted for any

reasonable Q... and D. The averages (u*(Q; z = *=DJ/2))
have been obtained from Eq. A.24.

0.8 _
0.6 .
2(50,D
o -
0.4 e )}
02t .
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

A

FIGURE 3 The dependence of fluctuations in the middle of the stack
0°(zy = 0, D)/a3 () and at the boundaries 0*(z, = +D/2, D)/a ( ) on
A. At a constant value of d this is effectively the dependence on the surface
tension . The calculational details are the same as in Fig. 2.
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FIGURE 4 Dimensionless interlamellar pressure versus dimensionless
separation in finite versus infinite arrays. Solid lines indicate the pressure
versus separation with an inverse-square attractive energy (fop) and repul-
sive energy (bottom) together with exponential repulsion of the form
Pye™ " (cf. Eq. 11 with parameter H positive or negative), where d = D/N.
Dotted lines show pressure versus separation for stacks of finite thickness,
N = 107 10% 10* 10° layers; the greatest effect is for slabs of the least
thickness. Pressure is given in reduced units and separation is in dimen-
sionless kd units. For these computations, the surface tension y was taken
to be 64 erg/cm?, and H was chosen so that the secondary minimum was
at kd = 9.5. In all cases there is a prediction of finite swelling, even where
there are no direct interlamellar attractive forces.

Taking into account the form of (¥), one can connect
the change of the free energy (Eq. 5) due to the presence of
surface constraints with the average of the surface free
energy (Eq. 30). Writing the change of the free energy as an
integral of the corresponding interaction pressure, one is left
with the following simple energy balance, valid in the limit
of small surface perturbation, effectively for y/VRBK, << 1:

NJ II(d)dd = (¥s). (31
do

I1(d) is the interaction pressure of the bulk phase (Fig. 4,
solid line), and the work [ gol'[(a') dd is needed to bring the
spacing from d,, to d, the spacing shown in the presence of
surface perturbation. If the underlying interaction pressure
is of the form in Eq. 28, the meaning of this relation is not
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difficult to discern. The total work involved in changing the
apparent secondary minimum in the potential from d, to d is
equal to the change in surface energy due to the boundary
suppression of fluctuations.

Again, both numerical investigations (see Fig. 4), as well
as the formula (Eq. 31), confirm the paramount importance
of the surface energy term, which is proportional to Q2
(Eq. 5), which is absent from the electrodynamic van der
Waals forces. As previously discussed (Ajdari et al., 1992),
this difference is due to a natural cutoff in the Q integrals of
the theory of mechanical van der Waals forces stemming
from the atomic dimensions of the smectic layer molecules,
below which the continuum elastic energy ansatz loses
meaning, as well as to the fact that %, which plays a role
similar to the dielectric response function in the theory of
electrodynamic van der Waals forces, depends on the den-
sity of the system, d.

DISCUSSION

The fundamental reasoning in our analysis almost has the
rhythm of a syllogism:

1. Undulations create repulsive forces (Eq. 1).

2. Surface tension suppresses undulation (Eq. 2).

3. Surface tension suppresses repulsive forces (Eq. 5 and
Eq. 31).

It is the range and the energy distribution of this suppres-
sion, even effecting an attractive force between tense walls,
that startle. The mode-summation formalism used here to
estimate surface perturbation of undulations is, in principle,
the same as the summation-over-modes used to formulate
electromagnetic fluctuation forces between macroscopic
bodies (Mahanty and Ninham, 1976). There, one is select-
ing from the infinity of all possible electromagnetic fluctu-
ations those particular modes that are perturbed by the
presence of boundaries whose dielectric properties differ
from that of the medium between. Here, in a manner similar
to that used by Adjari et al. (1992), we sum those mechan-
ical undulations that are changed by the presence of tense
surfaces bounding a bilayer stack of thickness D.

The bulk phase Hamiltonian (Eq. 1) has a straight spring
term for compressibility % perpendicular to the layers but,
in the absence of applied lateral tension, the lateral com-
pressibility depends on the square of curvature, creating a soft
balance between lateral and perpendicular compressibilities.

Surface tension vy adds a Q° dependence (Eq. 2) to the
energy of the two surface layers. There are two kinds of
consequences from this term. First, the surface energy itself
is dominated by the highest-Q, shortest wavelength undu-
lations, which in the limit of small y vary as ~kTyQ?,./
VBK, (second term, Eq. 5, and Eq. 30). Moreover, this
contribution disturbs the behavior of the lowest-Q, longest
wavelength modes. These modes extend to the full lateral
dimension allowed by the size of the sample, probably the
domain size of the particular multilayer preparation. Be-
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cause the transverse and lateral perturbations are connected
by the same Q’s, the tension-suppressed, long-wavelength
modes reach into the layered structure as well as along it.
The effect of suppression, at least, in principle, reaches into
the multilayer to depths as great as the lateral extent of the
lamellar domains.

As amply demonstrated by Adjari et al. (1992), mechan-
ical van der Waals (or Casimir) forces have a nominally 1/D
power-law variation (third term, Eq. 15) when moduli %
and K, have fixed values (as do electromagnetic suscepti-
bilities in Lifshitz/Casimir theory). Here, however, because
the transverse compressibility @ itself is a function of
thickness D, this 1/D contribution appears to have less
energy than the straight surface energy (Eq. 5).

Equation 31 shows the equivalence between the surface
energy (Hs) and the work done on the stack of N layers to
displace it from the mean spacing d; in a y = 0 multilayer
of effectively infinite thickness, to d., the average spacing
of a finite-thickness multilayer subject to surface tension.
Because (Hg) is independent of N, this equivalence shows
that surface-induced compression is spread throughout the
entire multilayer stack. By comparing the work done to
compress layers under surface tension with those free of
tension, one finds that the work per layer is inversely
proportional to the number of layers N (Fig. 4).

At the same time, the profile of surface-suppressed un-
dulation almost rescales with the height of the smectic stack
(see Eq. 31 and Fig. 2). This rescaling seems to emerge
naturally from the fact that the longest wavelength modes
dominate the range of interaction. As in any two-dimen-
sional system under tension, any undulation is spread over
the entire available surface. In the case of lipid multilayers,
one expects this available surface to be on the order of the
domain size. Hence very long-range surface perturbations
can be expected on carefully prepared samples; the range of
perturbation might well be controlled in an observable way
by breaking up domains.

To a first approximation, the attractive forces of which
we speak act in addition to the compressibilities of the same
layers when in contact with solutions that impose negligible
surface energies. Anticipating later application of these
ideas to the “vapor pressure paradox,” we note that lipid
multilayers in liquid water or in osmotically stressing poly-
mer solutions are a good example of layers bounded by
low-energy surfaces (Rand and Parsegian, 1989); multilay-
ers adsorbed on a solid surface or bounded by a vapor
surface are necessarily bounded by high-energy surfaces
(Smith et al., 1987; Tristram-Nagle et al., 1993).

At this point we can only speculate about the generality
of the proposed mechanism. It is not immediately obvious to
what extent it should also apply to the stacks of solid
membranes with a finite in-plane shear modulus that have
also been reported to exhibit a “vapor pressure paradox”
(Smith et al., 1990; Yi Shen et al., 1993) or to the hydrogels
of polymer networks that seem to display the same anomaly.
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(We thank the anonymous referee for pointing out this
example to us).

We work, then, from a reference state for mechanical
susceptibility built on bulk free energy terms only. In prac-
tice, this state can be, for example, the osmotic stress on a
layered structure in a liquid and subject to an osmotic stress
at each particular lamellar repeat spacing, the spacing that a
surface-inhibited sample would achieve infinitely far from
the surface. For formal convenience in our derivation, we
have used most-simple approximations for the osmotic
compressibility, the steric repulsion formula of Helfrich, or
the form of the osmotic compressibility measured in actual
multilamellar arrays.

Our illustrative computations show that the strength of
suppressed undulation is enough to compress smectic lay-
ers, even against net repulsion between bilayers (Fig. 4).

The stubborn persistence of the vapor paradox itself and
the long reach of boundary surfaces that emerge from the
present analysis suggest that there is still a lot to learn about
the confinement of layered systems in finite spaces. Can
mechanical van der Waals forces explain the paradox? The
energies involved are large enough to suggest that they
might. The present formulation suggests a systematic strat-
egy for measurements on charged and uncharged lamellae
using osmotic stress of vapor pressure and of polymer
solutions to focus on what might be a dominant but ne-
glected consequence of molecular confinement. The first
step should probably be to reexamine the variation of mul-
tilayer spacings near vapor interfaces. After that, parallel
osmotic stress studies on samples of different thickness—in
vapor and in liquids—can be used to test the competition
between surface and bulk energies suggested by Eq. 31.

In the first experiments of this type, spacings in hydrated
lipid multilayers have been observed after the creation of a
vapor space within. Near the vapor, bilayer separations
decrease by several angstroms compared to the original
spacings. A gradient of spacings develops to a depth of
several millimeters from the vapor surface (Podgornik et al.,
1996).

There is good reason to expect surface effects similar to
those formulated here to act in polymer systems such as in
assemblies of DNA or other semiflexible molecules. Con-
sidering that the length of these molecules is often much
larger than the compartments into which they are confined,
one might have to think about molecular packing in these
small spaces in terms much different from what is expected
from measurements in large solutions.

APPENDIX

Free energy through Green function

The analysis of the model defined by Eqs. 1 and 2 now proceeds by the
standard decomposition of the displacement field u(z, p) into Fourier
components:

u(z, p) = 2, ulz, Qe .

Q

(A1)
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The partition function can be written in this way in the form

73 M(Z Q) e~ (B/DfJdzdz’ u(z, Q¥(z. 2'; Qu(z', Q)

ED) =[]

Q

= [I(det %(z. ; Q)2 (A2)
0
where the mode Hamiltonian is
9? D
H(z,z';0) = [—%7 + K.Q* + v0*8|z + —)
0z 2
D
+ yQ28(z - 5)]6(1 -7')
62
= [_%5? + FQ(z)]8(z -27'). (A.3)

In deriving Eq. A.3, we used the well-known properties of Gaussian
integrals.
The corresponding free energy thus follows as

T
% =—kTIn E(D) = 3 > Indet ¥#(z, z'; Q)
0

(A4)
kT
=5 2Trhn¥(z 23 Q).
Q
or in a simplified form (Podgornik, 1989),
-1
FD)=2TrTo@)| du%.(:7:Q), (AS5)
Q 0
where 4,,(z, z'; Q) is the Green function, being a solution of
09,(z,7'; Q)
”_azz* - nK0%,(2,7;Q = -8z—z'), (A.6)
with the boundary condition at z = *D/2,
99,z =*D/2,7'; Q) D
— = +— 5/ =
% r y0*4,| z —2,Z,Q 0.
(A7)

This particular form of the boundary condition follows from the model
form of the surface free energy #g(u(z, p)) and is due to the two surface
8 functions in the definition of To).

In terms of the Green function, the integration in w is in effect the
coupling constant integration in the compressibility % ~'. The two limits of
integration represent a totally incompressible system and, at the other end,
a system with a chosen value of 3. In this respect the above formalism is
quite close to the evaluation of van der Waals forces between surfaces
immersed in an electrolyte, where the coupling constant integration is
performed with respect to the dielectric permeability and the boundary
condition stems from the general electrostatic boundary condition (Pod-
gornik, 1989).
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The solution of the above set of equations turns out to be

1 I i 2Ae2 KD
9.(2,7;Q) = i\gQ 2[6 VKIARQee 1 — A2p—2KIBQ@D

(e VEBGD ook \/g Xz +7') + A cosh Vg 0%z — Z'))},

(A.8)

with

v— KRB
v+ KB

being independent of Q. The detailed form of the boundary condition (Eq.

A.7) affects only the form of A. The function A is analogous to the

difference over sum of dielectric permitivities in the Lifshitz formulation of

the van der Waals forces (Mahanty and Ninham, 1976). The quantity

VK. has the form of a surface energy from terminating what would

otherwise be an infinitely thick multilayer (de Gennes and Prost, 1993).
Furthermore, one can straightforwardly prove that

A= (A.9)

9
Tr o(2)8,(z, z'; Q) = P T(w;Q),  (A.10)
where
T(w; Q) = \/g Q°D — In(1 — A?)
(A.11)

) +In(1 — A% 2 VK/BQD)

y
+ ln( K%

The free energy can thus be obtained from the coupling constant integral
(Eq. A.5) up to an additive constant in a simple form:

[ern — O y
F(D) = Fp(D) + kT % ln(l + m)

+ il > In(1 — A% 2 VEBQD)
25 (A.12)

where the three terms stand for the bulk or volume free energy %y, the
surface, and the finite-size contributions to the free energy. In the case of
an electrolyte, the different parts of the free energy would correspond to
Debye-Hiickel, Onsager-Samaras, and van der Waals-Lifshitz contribu-
tions to the free energy (Podgornik, 1989). The bulk part corresponds to the
free energy of a slab D thick, but without taking into account any boundary
effects.

Free energy through eigenfunction expansion

An alternative yet equivalent path to the free energy can be followed if the
Gaussian integral in the partition function (Eq. A.2) is evaluated by means
of the eigenfunctions of the bulk Hamiltonian (Eq. 1). Using again the
Fourier decomposition of the displacement field,

u(z, p) = 2 u(z, Qe .

Q

(A.13)
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the equation for the eigenfunctions of the bulk Hamiltonian can be derived
in the form

Fu(lQ2) KL
97 B

u(Q;z) = 0. (A.14)

These eigenfunctions have the Fourier amplitudes of the general form

(Q; 2) = A(Q)e VKM + B(Q)e™ VI,
(A.15)

Expressed through the eigenfunctions of its bulk part, the Hamiltonian of
the system can be cast into the form

Hw(Q; 2)) = Hp(u(Q; 7)) + Hs(u(Q; 2))
B E([K o sinh (K/B)Q*D

- JKIB)Q?

+ yQ* cosh \%QT](AZ(Q) + BXQ))
+ 2yQ°A(Q)B(Q)).

The nondiagonal parts in A(Q) and B(Q) stem exclusively from the surface
part of the Hamiltonian #s(u(Q; 2)), as the eigenfunctions diagonalize only
the bulk part J€5(u(Q; z)). Because now #(u(Q: z)) is a Gaussian function
of only the Fourier amplitudes of the displacement field, the trace in the
partition function can be evaluated as

(A.16)

ED) =11 f f dA(Q)dB(Q)exp( — BH(A(Q), B(Q))
e (A.17)
=

l._[ T
0 \/det(BGik(Q))’
where we introduced the 2 X 2 matrix,

G(Q) =

Ko sinh (K/%B)Q’D
¢ VKIB)Q? vQ?
+ yQ? cosh \(K/B)Q’D

, sinh (K/B)Q*D

yQ ke (KJB)Q
+ yQ? cosh \(K/B)Q*D

. (QD(Q) @'(Q)) (A19)

2'(Q  2Q)

where we also defined the quantities @(Q) and @'(Q). With these defini-
tions the Hamiltonian can be succinctly written as

A(Q)].

HAQ). B(O) = [AQ). BTG )| (A19

We are now in a position to evaluate first the mean squared values of the
Fourier amplitudes of the eigenfunctions in Eq. A.15. By applying the
equipartition theorem to the Hamiltonian (Eq. A.19), we deduce that only
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the combinations u_(Q) = A(Q) + B(Q) and u_(Q) = A(Q) — B(Q) are
zero mean Gaussian variables, i.e.,

(ui(Q) = B(Q) = B'(Q) (A.20)
From this we obtain
det(BG(Q)) = !
AUBGO) = (2 () % (0D
= B’K.BQ* sinh \/% 0D (A21)

w1+ e 21 4 2 cotanh [ 022
\]Kc—%a %QZ \/Kc—%co 2<% 73)

The corresponding free energy can now be evaluated as

kT
F(D) =5 2 In det(BG(Q))
0 (A.22)

kT kT
=5 2 G (0) — 5 > In@*(Q)),
0 [¢]

which is in the form of the fluctuation free energy first derived by Helfrich
(1978). Rearranging the determinant in Eq. A.21, one is now led to the final
form of the free energy as

erry — O 7
F(D) = F5(D) + kT % ln(l + m)
(A.23)

kT
+ 5 Din(l - A EmaD)
Q

in complete agreement with what was evaluated before Eq. A.12.

Fluctuation profile

The spatial profile of the fluctuations in the layer displacement field for
|z] = Dr2 can be characterized by first defining the total single-layer
fluctuation o?(z):

1
(D) = g j dp(u(z, p)) = 2A|ulz, Q)P
0 (A.24)

= > sz, z; Q).
0

where

Az, 2’5 Q) = (u(z, Qu(z', —Q)). (A.25)

Because the average in the above equation is over a Gaussian ensemble
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with the measure #(z, z'; Q) (Eq. 1),

A,z Q=11

Q
Du(z, Quiz, Qu(z', — Qe ™ Wk e D),
(A.26)
we obtain after elementary Gaussian integrations
aZ
Az, 7;Q) 7 = #(z.2; Q) = [‘%672 + l“q(z)]ﬁ(z -7').
(A.27)

The above result is due to the fact that sd(z, z'; Q) is just an inverse of the
Hamiltonian operator. Thus it follows that

Az,7'5Q) =B 'Go-g-1(z, 25 Q).
where G (z, z'; Q) is given by Eq. A.8. Finally, we arrive at
(D) = B'G -9z, 7, Q)

(A.28)

2Ae72 VKIB)Q*D
1 — A2 2 KIBQD

1 1
= md[l +

(A.29)
(A + ¢ VEIBQD (oh \/% Q2(2z))}.

The fluctuations of the displacement field in the transverse direction
depend only on the ratio z/D and are thus of long range. The same
derivation could be again repeated by means of the eigenfunction expan-
sion, but we refrain from explicitly doing this exercise. The results are
exactly the same.

We thank Stephanie Tristram-Nagle and John Nagle for instructive and
encouraging correspondence and conversations. We are grateful to Evan
Evans, Sol Gruner, Peter Rand, and Cyrus Safinya for keeping the “para-
dox” on our minds by skillful experiments and persistent arguments.
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